Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → l
append(l1, l2) → ifappend(l1, l2, is_empty(l1))
ifappend(l1, l2, true) → l2
ifappend(l1, l2, false) → cons(hd(l1), append(tl(l1), l2))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → l
append(l1, l2) → ifappend(l1, l2, is_empty(l1))
ifappend(l1, l2, true) → l2
ifappend(l1, l2, false) → cons(hd(l1), append(tl(l1), l2))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APPEND(l1, l2) → IFAPPEND(l1, l2, is_empty(l1))
IFAPPEND(l1, l2, false) → TL(l1)
IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)
APPEND(l1, l2) → IS_EMPTY(l1)
IFAPPEND(l1, l2, false) → HD(l1)

The TRS R consists of the following rules:

is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → l
append(l1, l2) → ifappend(l1, l2, is_empty(l1))
ifappend(l1, l2, true) → l2
ifappend(l1, l2, false) → cons(hd(l1), append(tl(l1), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APPEND(l1, l2) → IFAPPEND(l1, l2, is_empty(l1))
IFAPPEND(l1, l2, false) → TL(l1)
IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)
APPEND(l1, l2) → IS_EMPTY(l1)
IFAPPEND(l1, l2, false) → HD(l1)

The TRS R consists of the following rules:

is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → l
append(l1, l2) → ifappend(l1, l2, is_empty(l1))
ifappend(l1, l2, true) → l2
ifappend(l1, l2, false) → cons(hd(l1), append(tl(l1), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APPEND(l1, l2) → IFAPPEND(l1, l2, is_empty(l1))
IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)

The TRS R consists of the following rules:

is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → l
append(l1, l2) → ifappend(l1, l2, is_empty(l1))
ifappend(l1, l2, true) → l2
ifappend(l1, l2, false) → cons(hd(l1), append(tl(l1), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)
The remaining pairs can at least be oriented weakly.

APPEND(l1, l2) → IFAPPEND(l1, l2, is_empty(l1))
Used ordering: Polynomial interpretation [25,35]:

POL(cons(x1, x2)) = 1/2 + (4)x_2   
POL(IFAPPEND(x1, x2, x3)) = (5/4)x_1 + (1/2)x_3   
POL(APPEND(x1, x2)) = (3/2)x_1   
POL(tl(x1)) = (1/4)x_1   
POL(true) = 1/4   
POL(is_empty(x1)) = (1/2)x_1   
POL(false) = 1/4   
POL(nil) = 1/2   
The value of delta used in the strict ordering is 1/8.
The following usable rules [17] were oriented:

is_empty(nil) → true
is_empty(cons(x, l)) → false
tl(cons(x, l)) → l



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APPEND(l1, l2) → IFAPPEND(l1, l2, is_empty(l1))

The TRS R consists of the following rules:

is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → l
append(l1, l2) → ifappend(l1, l2, is_empty(l1))
ifappend(l1, l2, true) → l2
ifappend(l1, l2, false) → cons(hd(l1), append(tl(l1), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.